CETIFICATION

SDG No:

MC47884

Humacao, PR

Laboratory:

Accutest, Massachusetts

Site:

BMS, Building 5 Area, PR

Matrix:

Groundwater

SUMMARY:

Groundwater samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken September 15-19, 2016 and were analyzed in Accutest Laboratory of Marlborough, Massachusetts that reported the data under SDG No.: MC47884. Results were validated using the following quality control criteria of the methods employed (MADEP VPH and MAPED EPH, Massachusets Department of Environmental Protection, 2004) and the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
MC47884-1	S-39S	Groundwater	Volatiles TPHC Ranges Extractable TPHC Ranges
MC47884-2	RA-10S	Groundwater	Volatiles TPHC Ranges Extractable TPHC Ranges
MC47884-3	MW-13	Groundwater	Volatiles TPHC Ranges Extractable TPHC Ranges
MC47884-4	MW-7	Groundwater	Volatiles TPHC Ranges Extractable TPHC Ranges
MC47884-5	MW-3	Groundwater	Volatiles TPHC Ranges Extractable TPHC Ranges
MC47884-6	G-1R (3)	Groundwater	Volatiles TPHC Ranges Extractable TPHC Ranges
MC47884-7	E-1	Groundwater	Volatiles TPHC Ranges Extractable TPHC Ranges

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

October 6, 2016

Report of Analysis

Client Sample ID: S-39S Lab Sample ID: Matrix:

MC47884-1

AQ - Ground Water MADEP VPH REV 1.1

Date Sampled: 09/15/16 Date Received: 09/20/16

Percent Solids:

Method: Project:

BMSMC, Building 5 Area, Puerto Rico

Run #1 Run #2	File ID AB95338.D AB95339.D	DF 1 10	Analyzed 09/21/16 09/21/16	By AF AF	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GAB5264 GAB5264
------------------	-----------------------------------	---------------	----------------------------------	----------------	-------------------------	--------------------------	--

Purge Volume Run #1 5.0 ml Run #2 $5.0 \, ml$

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	23.3 7830 a 35.0 19.1 1470	50 500 50 50 50	8.8 80 9.7 8.8 8.0	ug/l ug/l ug/l ug/l ug/l	J JB J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
	2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene	102% 106%	99% 104%	70-1: 70-1:		

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

TA

Prep Date

09/26/16

Page 1 of 1

Client Sample ID: S-39S Lab Sample ID:

MC47884-1

Matrix: Method: AQ - Ground Water

DF

1

MADEP EPH REV 1.1 SW846 3510C

Analyzed

10/01/16

Date Sampled: Date Received: 09/20/16

09/15/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Puerto Rico

Prep Batch OP48782

Analytical Batch **GDE875**

Run #1 Run #2

Initial Volume

File ID

DE15707.D

Final Volume

960 ml

2.0 ml

Run #1 Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND ND ND ND	100 100 100 100	30 17 28 30	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	75% 92% 71% 99%		40-14 40-14 40-14 40-14	10% 10%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

	nt Sample ID:
Lab	Sample ID:

RA-10S MC47884-2

Matrix: Method:

AQ - Ground Water

MADEP VPH REV 1:1 BMSMC, Building 5 Area, Puerto Rico Date Sampled: 09/15/16 Date Received: 09/20/16

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	AB95343.D	1	09/21/16	AF	n/a	n/a	GAB5264

Run #2

Project:

Purge Volume

Run #1 Run #2 $5.0 \, \mathrm{ml}$

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	29.5 70.8 28.7 25.3 ND	50 50 50 50 50	8.8 8.0 9.7 8.8 8.0	ug/l ug/l ug/l ug/l ug/l	J B JB J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
	2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene	94% 104%			30% 30%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Analytical Batch GDE875

Client Sa Lab Sam Matrix: Method: Project:	AQ - MAI			Da	Date Sampled: 09 Date Received: 09 Percent Solids: n/		
Run #1	File ID	DF	Analyzed	By	Prep Date	Prep Bate	h Analy
	DE15709.D	I	10/01/16	TA	09/26/16	OP48782	GDE8

Run #2			10/01/10		 UF40702	GDE873	
Run #1 Run #2	Initial Volume 950 ml	Final Volu 2,0 ml	lme	-	 		

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND ND ND ND	110 110 110 110	30 18 29 30	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	83% 96% 81% 99%		40-1 40-1 40-1 40-1	40% 40%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N \, = \, Indicates \, \, presumptive \, evidence \, \, of \, a \, compound \, \,$

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:

MW-13 MC47884-3

Matrix: Method:

AQ - Ground Water

Date Sampled: 09/16/16 Date Received: 09/20/16

MADEP VPH REV 1.1

Percent Solids:

Project:

BMSMC, Building 5 Area, Puerto Rico

Prep Batch

Q

JB

JB

Analytical Batch

Run #2

Run #1

DF AB95335.D 1

Analyzed By 09/21/16 AF

n/a

MDL

8.8

8.0

9.7

8.8

8.0

Prep Date

Units

ug/l

ug/l

ug/l

ug/l

ug/I

n/a

GAB5264

Purge Volume 5.0 ml

Run #1 Run #2

CAS No.

Volatile TPHC Ranges

File ID

CAS No. Compound

C5: C8 Aliphatics (Unadj.) C9 C12 Aliphatics (Unadj.) C9 C10 Aromatics (Unadj.)

C5- C8 Aliphatics C9- C12 Aliphatics

Surrogate Recoveries

2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene

Run#1

Result

ND

30.2

25.8

ND

ND

99%

104%

Run#2

RL

50

50

50

50

50

Limits

70-130% 70-130%

ND = Not detected

MDL = Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Fil	e ID	DE	Analyzad	TDvr	Demo Data	Deen Date	1. A S
Project:	BMS	MC, Buildir	ıg 5 Λrea, Puer	to Rico			
Method:			EV 1.1 SW846		P	ercent Solids:	n/a
Matrix:	-	Ground Wa			E	ate Received:	09/20/16
Lab Sample II	D: MC4	7884-3			Σ	Date Sampled:	09/16/16
Client Sample	ID: MW-	13					

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	DE15710.D	1	10/01/16	TA	09/26/16	OP48782	GDE875
Run #2							

Run #1 980 ml 2.0 ml Run #2		Initial Volume 980 ml						
--------------------------------	--	--------------------------	--	--	--	--	--	--

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND 36.8 ND ND	100 100 100 100	29 17 28 29	ug/l ug/l ug/l ug/l	JB
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	100% 97% 100% 41%	40-140% 40-140% 40-140% 40-140%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: MW-7

Lab Sample ID: MC47884-4

Matrix: Method:

Project:

AQ - Ground Water

MADEP VPH REV 1.1

BMSMC, Building 5 Area, Puerto Rico

Date Sampled: 09/16/16 Date Received: 09/20/16

Percent Solids: n/a

File ID DF Ву Analyzed Prep Date Prep Batch Analytical Batch Run #1 AB95344.D 09/21/16 AF n/a n/a GAB5264

Run #2

Purge Volume

5.0 ml

Run #1 Run #2

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	10.2 53.5 31.5 9.4 ND	50 50 50 50 50	8.8 8.0 9.7 8.8 8.0	ug/l ug/l ug/l ug/l ug/l	J B JB J
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
	2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene	94% 103%			30% 30%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID:	MW-7
Lab Sample ID:	MC478

Matrix

47884-4

Method: Project:

AQ - Ground Water

MADEP EPH REV 1.1 SW846 3510C BMSMC, Building 5 Area, Puerto Rico

Date Sampled: 09/16/16 Date Received: 09/20/16

Percent Solids:

- 1	Run #1	File ID DE15711.D	DF 1	Analyzed 10/01/16	By TA	Prep Date 09/26/16	Prep Batch OP48782	Analytical Batch GDE875
	Run #2							

Initial Volume Final Volume 900 ml 2.0 ml

Run #1 Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND ND 31.9 ND	110 110 110 110	32 19 30 32	ug/l ug/l ug/l ug/l	JB
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	104% 96% 97% 102%	40-140% 40-140% 40-140% 40-140%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

By

AF

Page 1 of 1

Client Sample ID: Lab Sample ID:

MW-3 MC47884-5

Matrix: Method:

AQ - Ground Water MADEP VPH REV 1.1

Date Sampled: 09/16/16 Date Received: 09/20/16

Percent Solids:

Project: BMSMC, Building 5 Area, Puerto Rico

Run #1 Run #2 File ID AB95340.D DF Analyzed 1 09/21/16

Prep Date n/a

Prep Batch n/a

Analytical Batch GAB5264

Purge Volume

Run #1 Run #2 5.0 ml

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	37.7 506 377 37.3 125	50 50 50 50 50	8.8 8.0 9.7 8.8 8.0	ug/l ug/l ug/l ug/l ug/l	J

CAS No. Surrogate Recoveries

2,3,4-Trifluorotoluene

2,3,4-Trifluorotoluene

Run#1 99% 105%

Limits 70-130% 70-130%

Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sa Lab Sam Matrix: Method; Project:	AQ - G MADE	round W P EPH R	ater EV 1.1 SW846 ing 5 Area, Puer		Date Sampled: 09/16/16 Date Received: 09/20/16 Percent Solids: n/a			
Run #1 Run #2	File ID DE15712.D	DF 1	Analyzed 10/01/16	By TA	Prep Date 09/26/16	Prep Batch OP48782	Analytical Batch GDE875	
Run #1	Initial Volume 960 ml	Final 3	Volume					

Extractable TPHC Ranges

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	524 30.6 ND 440	100 100 100 100	30 17 28 30	ug/l ug/l ug/l ug/l	JΒ
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	94% 92% 82% 102%	40-140% 40-140% 40-140% 40-140%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: G-1R(3) Lab Sample ID: MC47884-6

Matrix: Method:

AQ - Ground Water MADEP VPH REV 1.1

Date Sampled: 09/19/16 Date Received: 09/20/16

Percent Solids:

Project: BMSMC, Building 5 Area, Puerto Rico

Run #1 Run #2	File ID AB95341.D AB95352.D	DF 1 100	Analyzed 09/21/16 09/21/16	By AF AF	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GAB5264 GAB5264
------------------	-----------------------------------	----------------	----------------------------------	----------------	-------------------------	--------------------------	--

Purge Volume Run #1 $5.0 \, \mathrm{ml}$ Run #2 5.0 ml

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	155 74600 a 125 63.7 14100	50 5000 50 50 50	8.8 800 9.7 8.8 8.0	ug/l ug/l ug/l ug/l ug/l	В
CAS No.	Surrogate Recoveries	Run#1	Run#2 Limits		its	
	2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene	108% 113%	97% 104%	70-1 70-1		

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:

G-1R(3) MC47884-6

AQ - Ground Water

DF

Date Sampled: 09/19/16

Matrix: Method:

MADEP EPH REV 1.1 SW846 3510C

Date Received: 09/20/16 Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Puerto Rico

Run #1 Run #2 File ID DE15713.D Analyzed By 10/01/16 TA Prep Date 09/26/16

Prep Batch OP48782

Analytical Batch GDE875

Run #2

Initial Volume Final Volume Run #1

880 ml

2.0 mI

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	59.9 ND 68.6 58.3	110 110 110 110	33 19 31 33	ug/l ug/l ug/l ug/l	J JB J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	104% 95% 91% 107%	40-140% 40-140% 40-140% 40-140%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID:

Lab Sample ID:

MC47884-7

Matrix: Method:

Project:

AQ - Ground Water

MADEP VPH REV 1.1

BMSMC, Building 5 Area, Puerto Rico

Date Sampled: 09/19/16

Date Received: 09/20/16

Percent Solids: n/a

File ID DF Analyzed By Prep Date

Run #1 Run #2

AB95351.D 1

09/21/16

AF

n/a

Prep Batch n/a

Analytical Batch

GAB5264

Purge Volume

Run #1

5.0 ml

Run #2

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.)	25.2	50	8.8	ug/l	<u>J</u>
	C9- C12 Aliphatics (Unadj.)	35.1	50	8.0	ug/l	JB
	C9- C10 Aromatics (Unadj.)	30.2	50	9.7	ug/I	JB
	C5- C8 Aliphatics	17.8	50	8.8	ug/i	J
	C9- C12 Aliphatics	ND	50	8.0	ug/l	_
	55					
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
	2,3,4-Trifluorotoluene	97%		70-1	30%	
	2.3.4-Trifluorotoluene	103%			30%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

TA

Prep Date

09/26/16

Page 1 of 1

		nt Sample ID:	E-I
ĺ	Lab	Sample ID:	MC4

File ID

DE15714.D

7884-7 AQ - Ground Water

DF

1

Date Sampled: 09/19/16 Date Received: 09/20/16

Matrix: Method:

MADEP EPH REV 1.1 SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Puerto Rico

Analyzed

10/01/16

Prep Batch **Analytical Batch** OP48782 **GDE875**

Run #1 Run #2

Initial Volume Final Volume Run #1 950 ml $2.0 \, \mathrm{ml}$

Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	63.5 ND ND 33.5	110 110 110 110	30 18 29 30	ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyi 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	82% 92% 75% 101%		40-1 40-1 40-1 40-1	40% 40%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

3	
ACC	

.

CHAIN OF CUSTODY

PAGE _ [OF]

NE			50 D'Angelo I	or. Builds	ng One, M	-	L MAI	01752				mp.	777	2 57	25 6	5 19	Dyste O	-	Part #			
INE			TELS		OS FAX	: 500-40 i	7753					-	Carried S				C	ā.	Property Com	N.	m	-97884
Client / Reporting Information	1000	1000	2 Projec	t Inform	affor	ESSN	Dal.	4(2)	0.03		BAR.	2 43	Req	sested Ar	elysis I	(see Ti						Martin Codes
Company Hama	Project Home.																					
Anderson Mulholland & Associates	BMSMC 3rd	Quarter Groun	denter San	opho.	016							1				H						DW - Distang Wa GW - Citayed Wel
Z790 Westchester Avenue, Suite 417					-		-	-	-			7			1	H				- 1		WW - Water SW - Surface Wes
Chy Same Zo	Ch.		Simu	-	ny Harma		-	Total Re	gart to	-	_	-				П	8					SD+Sel SL-Sletge
Purchase MY 1657 Project Corese 5-and	7 Humecso		PR	Special								4	1 1			1	200				. 1	SED-Sedement OI - DB
10 TO TAX	624_2016				Cry Same 26							1	L				- 1		LID-Onertique AIR-Ar			
Terry Taylor Prove # Fee #	Chart Purphase	Order #		Chy					1	П									SOL - Other Sea WP - Wigo			
914-291-0480 Serestoria Instrumental Prince C	Pionel Manca			-	African			-				П				1	8 1	Fil-Fund Shipti, ED-Equipment Cla				
N. Rivers, R. Stuart, J.D. Valle, D. Lindstrand	Terry Taylor								E	П			ы				- 1	1	PS-Piran Dank TS-Tro Blank			
			-	-	1		F	North	of pre-		÷.	ΙĒ	₹			Ш				- 1		
Field ID / Point of Collection	MECHANIA	Date	Tain	-	-		23		ğ ş			BMA EPH	AN AN									LAB USE ONL
1 S-39S			1508	M	9	5	15	П	Т	П	П	K	X				- 7				П	
2 RA-105			1502	NR	CW	5	5	П	T	П	П	X	X		T	INTE	AI A	SES	SMEN	- 1	A	
3 MW-13		9-16-16	1209	N	5W	5	5	П	Т	П	П	TX	X	\neg							7	
4 MW-7		7-16-16	1357		6W	5	ব	П	T	IT	\sqcap	K	X			LAG	LV	RIF	CATI	IN F	24	-
5 MW-3		9-16-16	1614		GW	5	1	T		1	Ħ	ĺχ	X				\neg			1	\neg	
6 G-IR (3)		9-19-16	1259		GW	5	3	Ħ			Ħ	Tx	×								┪	
71 E-1		9-19-16	1312		GW	5	3	Ħ	\top	H	Ħ	X	X				\neg	\neg		_	\neg	190
						_	Ť	11			††	1	\Box			\Box	\neg	\neg	\neg	-	╛	lBy
								П			T					\Box	7		\exists	1	\forall	197
				-			П	П	П	1	П	-	П			\Box	4			T		
	Service Services	Brown SE	Silver Fil	5-1	2005	- A		Н			Н	2015	12.00	400		077				600	20	0.0000000
Turnstand Time (Russians cops)	Street Sale	Maria Salaman Salaman	- Quinting	9/1/09	ger cerpi	Omin	Debe	rathe h	done	-	11	4900	Contract of	SCHOOL SE	Mileson.	Comm	- I	Services	Irathat	ara E	-	and the second
The Statemen Days Det. 18 Destronce Days Det. 18 Destronce Days (by Construct only) 19 Cap Augus 19 Days August 19 Days August		PATE PERMIT		層	ULLIN (M.C.	ovel 27) ()			Shirts Shirts EDD	SP Coto SP Coto Perma Perma	gary B	_									
2 Day EMERGENCY 1 Day ENERGENCY Emergency & Plant TAL days available VALLables	4 41 05					Caretera Caretara SL) Medica	e We	Pend	E CAY	Sure	wy		.		-	_		_	_		_	
A per many page of an electric	- Sec	opin Controly	att be discuss	and is	dow one!	-	mpins.	charg	-	-	er, inci	ueling .	ourier e				Name	-statu	1111	(A 10 PK)	SOA II.	ETHAN TH
11/	16 1700	Fed	EX				2	nded D	F	97	70			°Z;	Z0-/6	73.		سرا	2	<i>ኤ</i>	\leq	1
Miniplacing Systems Onto These		3					-	industrial Dis	F					Date 1	lenc .			Byr				-
Reduces that they		S					43	2.	43	4	0	Principle (State or note)	P						P3	7	54	-

MC47884: Chain of Custody Page 1 of 3

EXECUTIVE NARRATIVE

SDG No: MC47884 Laboratory: Accutest, Massachusetts

Analysis: MADEP VPH Number of Samples: 7

Location: BMSMC, Building 5 Area

Humacao, PR

SUMMARY: Seven (7) samples were analyzed for Volatiles TPHC Ranges by method MADEP

VPH. Samples were validated following the METHOD FOR THE DETERMINATION OF VOLATILE PETROLEUM HYDROCARBONS (EVH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the

primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues: None Major: None Minor: None

Critical findings: None Major findings: None

Minor findings: 1. Analytes detected in method blank at a concentration below the

reporting limits. Analytes detected in sample batch above MDL but below the reporting limits. Laboratory qualified the results as JB. Sample results below the reporting limit are qualified undetected (U) at the reporting

limits; results above the reporting limit/action level are retained.

COMMENTS: Results are valid and can be used for decision making purposes.

Reviewers Name: Rafael Infante

Chemist License 1888

Rafuel Defaut

Signature:

Date: October 6, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: MC47884-1

Sample location: BMSMC Building 5 Area

Sampling date: 9/15/2016

Matrix: Groundwater

METHOD: MADEP VPH

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	23.3	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	7830	ug/L	10	-	-	Yes
Ç9 - C10 Aromatics (Unadj.)	35.0	ug/L	1	JB	U	Yes
Ç5 - C8 Aliphatics	19.1	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics	1470	ug/L	1	-	-	Yes

Sample ID: MC47884-2

Sample location: BMSMC Building 5 Area

Sampling date: 9/15/2016

Matrix: Groundwater

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	29.5	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	70.8	ug/L	10	В	-	Yes
Ç9 - C10 Aromatics (Unadj.)	28.7	ug/L	1	JB	U	Yes
Ç5 - C8 Aliphatics	25.3	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics	50	ug/L	1	-	-	Yes

Sample ID: MC47884-3

Sample location: BMSMC Building 5 Area

Sampling date: 9/16/2016

Matrix: Groundwater

METHOD: MADEP VPH

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	50	ug/L	1	-	U	Yes
Ç9 - C12 Aliphatics (Unadj.)	30.2	ug/L	1	JB	U	Yes
Ç9 - C10 Aromatics (Unadj.)	25.8	ug/L	1	JB	U	Yes
Ç5 - C8 Aliphatics	50	ug/L	1	-	U	Yes
Ç9 - C12 Aliphatics	50	ug/L	1	-	U	Yes

Sample ID: MC47884-4

Sample location: BMSMC Building 5 Area

Sampling date: 9/16/2016

Matrix: Groundwater

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	10.2	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	53.5	ug/L	1	В	-	Yes
Ç9 - C10 Aromatics (Unadj.)	31.5	ug/L	1	JB	U	Yes
Ç5 - C8 Aliphatics	9.4	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics	50	ug/L	1	-	U	Yes

Sample ID: MC47884-5

Sample location: BMSMC Building 5 Area

Sampling date: 9/16/2016

Matrix: Groundwater

METHOD: MADEP VPH

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	37.7	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	506	ug/L	1	-	-	Yes
Ç9 - C10 Aromatics (Unadj.)	377	ug/L	1	-	-	Yes
Ç5 - C8 Aliphatics	37.3	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics	125	ug/L	1	-	-	Yes

Sample ID: MC47884-6

Sample location: BMSMC Building 5 Area

Sampling date: 9/19/2016

Matrix: Groundwater

Analyte Name	Result	Units D	lution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	155	ug/L	1	-	-	Yes
Ç9 - C12 Aliphatics (Unadj.)	74600	ug/L	100	-	-	Yes
Ç9 - C10 Aromatics (Unadj.)	12.1	ug/L	125	В	-	Yes
Ç5 - C8 Aliphatics	63.7	ug/L	1	-	-	Yes
Ç9 - C12 Aliphatics	14100	ug/L	1	-	-	Yes

Sample ID: MC47884-7

Sample location: BMSMC Building 5 Area

Sampling date: 9/19/2016 Matrix: Groundwater

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç5 - C8 Aliphatics (Unadj.)	25.2	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics (Unadj.)	35.1	ug/L	1	JB	U	Yes
Ç9 - C10 Aromatics (Unadj.)	30.2	ug/L	1	JB	U	Yes
Ç5 - C8 Aliphatics	17.8	ug/L	1	J	J	Yes
Ç9 - C12 Aliphatics	50	ug/L	1	-	U	Yes

DATA REVIEW WORKSHEETS

Type of validation	Full:X Limited:	Project Number:_MC47884
REVIEW OF	VOLATILE PETROLE	UM HYDROCARBON (VPHs) PACKAGE
actions. This documer informed decision and assessed according to METHOD FOR THE Dassachusetts Depart validation guidelines p	nt will assist the review in better serving the outle the data validation guide DETERMINATION OF Note that of Environmental romulgated by the US ation actions listed on	organics were created to delineate required validation wer in using professional judgment to make more needs of the data users. The sample results were ance documents in the following order of precedence /OLATILE PETROLEUM HYDROCARBONS (VPH), Protection, Revision 1.1 (2004). Also the general EPA Hazardous Wastes Support Section. The QC the data review worksheets are from the primary
The hardcopied (lab received has been review for SVOCs included)	iewed and the quality c	test_Laboratories data package ontrol and performance data summarized. The data
No. of Samples: Field blank No.: Equipment blank No.:	_7	Sample matrix:Groundwater
X Data CompletX Holding Times	eness S G ard Performance Coveries	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Overall Comr (C5_to_C12_Aliphatics;	ments:Volati _C9_to_C10_Aromatics	iles_by_GC_by_Method_MADEP_VPH,_REV_1.1)
Definition of Qualifiers:		
J- Estimated resul U- Compound not R- Rejected data UJ- Estimated notid Reviewer: All Land	detected	

		Criteria were no	ot met and/or see below
1.	DATA COMPLETNE A. Data Packag		
MISS	SING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
B.	Other		Discrepancies:

All criteria were metX
Criteria were not met and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	ACTION
_	OAIVII LLD	DATITACIED	ANALIZED	
Samples ana		hod recommende: vithin the required	d holding time. San criteria.	nple preservation
		`		
		1		

Criteria

Preservation:

Samples analyzed with ambient purge temperature: Samples must be acidified to a pH of 2.0 or less at the time of collection.

Samples analyzed with heated purge temperature: Samples must be treated to a pH of 11.0 or greater at the time of collection.

Methanol preservation of soil/sediment samples is mandatory. Methanol (purgeand-trap grade) must be added to the sample vial before or immediately after sample collection. In lieu of the in-field preservation of samples with methanol, soil samples may be obtained in specially-designed air tight sampling devices, provided that the samples are extruded and preserved in methanol within 48 hours of collection.

Holding times:

Aqueous samples using ambient or heated purge - analyze within 14 days. Soil/sediment samples - analysis within 28 days.

Cooler temperature (C	Criteria: 4 <u>+</u> 2	2 °C):3.7°	°C
-----------------------	------------------------	------------	----

Actions: Qualify positive results/non-detects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ).

If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R).

If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

		C	All criteria were not met an	eria were metX d/or see below	
CALIBRAT	IONS VERIFIC	CATION			
	Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.				
		Date of i	nitial calibration:07/	13/16	
		Dates of	initial calibration verific	ation:07/13/16_	
Instrument ID numbers:GCAB					
		Matrix/Le	evel:AQUEOUS/I	MEDIUM	
DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED	

Initial and initial calibration verification meet method specific requirements

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be equal to or less than 25% over the working range for the analyte of interest. When this condition is met, linearity through the origin may be assumed, and the average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range of interest. Calculate the collective CFs for C5-C8 Aliphatic Hydrocarbons and C9-C12 Aliphatic Hydrocarbons using the FID chromatogram. Calculate the collective CF for the C9-C10 Aromatic Hydrocarbons using the PID chromatogram. Tabulate the summation of the peak areas of all components in that fraction against the total concentration injected. The %RSD of the calibration factor must be equal to or less than 25% over the working range for the hydrocarbon range of interest.

Criteria- CCAL

- At a minimum, the working calibration factor must be verified on each working day, after every 20 samples, and at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte.
 Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and

DATA REVIEW WORKSHEETS

percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects. If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	07/13/16
Dates of continuing calibr	ation verification:09/21/16
Dates of final calibration v	verification:_07/13/16;_09/21/16
Instrument ID numbers:	GCAB
Matrix/Level:	AQUEOUS/MEDIUM

DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED
Contin	uing and final o	alibration verific	cation meets method speci	fic requirements.
		veille		

Note:

A separate worksheet should be filled for each initial curve

Note:

			Criteria were not ı		vere metX	
√A. BLANŀ	K ANALYSIS RE	SULTS (Sec	ctions 1 & 2)			
of contaminates associated with any blandetermine who broblem is ar	tion problems. In the samples, in the samples, in the samples at the samples susting the samples susting is one problems. It is one problems is the samples susting is the samples sustained in the sample sustained is the sample sustained in the sample sustained is the sample sustained in the sample sustained is the sample sustained in the sample sustained in the sample sustained is the sample sustained in the sample sustained in the sample sustained is the sample sustained in the sa	The criteria including tripa associated e is an inhe ence not af	ults is to determing for evaluation of b, equipment, and d with the case rent variability in fecting other data eing highly contain	blanks apply laboratory blanks be carefuthe data for the ALABORATOR	only to blance only to blance on the contract of the contract	nks ms I to the ank
ist the conta separately.	mination in the	blanks belo	w. High and low	levels blanks	must be trea	ted
_aboratory bla	anks					
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCE UNITS	ENTRATION	
	BLANKS MEET DWING:		THOD SPECIFIC	CRITERIA_	EXCEPT_FC	R_
	GWX3841-MB		C9-C12_(Alipha C9-C10_(Aron	atics)2 natics)2	7.5_ug/L 27.5_ug/L	-
Note:	limits. Analytes reporting limits below the reporting	detected Laboratory	od blank at a cor in sample batch g qualified the re e qualified undete limit/action level a	above MDL esults as JB. cted (U) at the	but below Sample resu	the ults
Field/Trip/Equ	ipment					
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCEN UNITS	ITRATION	
			_ANALYZED_AS		/ITH_THIS	-

All criteria were metX
Criteria were not met and/or see below

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

All criteria were met>	
Criteria were not met and/or see below _	

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID	SURROGATE COMPOUND 2,3,4-Trifluorotoluene			ACTION
SURROGATE _LIMITS	STANDARD_R	ECOVERIES_WIT	HIN_LABORATOR	Y_CONTROL
QC Limits* (Aque		130to_	to	2
QC Limits* (Solid	d)	to	to to	

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 70% or more than 130%, check calculations to locate possible errors. check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- (1) Obvious interference is present on the chromatogram (e.g., unresolved complex mixture):
- Percent moisture of associated soil/sediment sample is >25% and surrogate (2)recovery is >10%; or
- The surrogate exhibits high recovery and associated target analytes or (3)hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were met	X
Criteria were not met and/or see below	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 70 130% of the true value. Lower recoveries of n-nonane are permissible (if included in the calibration of the C9-C12 aliphatic range), but must be noted in the narrative if <30%.</p>

MS/MSD Recoveries and Precision Criteria	
Sample ID:_MC47884-3_MS/MSD	Matrix/Level:_Groundwater
List the %Rs_RPD of the compounds which do no	t meet the OC criteria

Note: MS/MSD % recovery and RPD within laboratory control limits.

No action is taken on MS/MSD results alone to qualify the entire case. However, used informed professional judgment, the data reviewer may use the MS/MSD results in conjunction with other QC criteria and determine the need for some qualification of the data. In those instances where it can be determined that the results of the MS/MSD affect only the sample spiked, the qualification should be limited to this sample alone. However, it may be determined through the MS/MSD results that the laboratory is having a systematic problem in the analysis of one or more analytes, which affects the associated samples.

			Criteria w		a were metX_ r see below
2. MS/MSD – U	nspiked Compou	nds			
List the concentration compounds in the ur	ons of the unspik nspiked sample, r	ed con	npounds a pike, and r	nd determine the matrix spike duplic	% RSDs of these ate.
COMPOUND	CONCENTRAT SAMPLE		MSD	%RPD	ACTION
					·
 					
Criteria: None specifi	ied, use %RSD <u><</u>	50 as	professiona	al judgment.	
Actions:					
If the % RSD > 50, q If the % RSD is not o use professional judo	alculable (NC) du	ue to no	ondetect va		

A separate worksheet should be used for each MS/MSD pair.

All criteria were met	X
Criteria were not met and/or see below _	

VIII. LABORATORY CONTROL SAMPLE (LCS/LCSD) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

List the %R of compounds which do not meet the criteria

LCS ID	COMPOUND	% R	QC LIMIT	ACTION	
LCS_RE	COVERY_WITHIN_L	ABORATORY	_CONTROL_LIM	TS	

Criteria:

- * Refer to QAPP for specific criteria.
- * The spike recovery must be between 70% and 130%. Lower recoveries of nnonane are permissible (if included in the calibration of the C9-C12 aliphatic range). If the recovery of n-nonane is <30%, note the nonconformance in the executive narrative.

Actions:

Actions on LCS recovery should be based on both the number of compounds that are outside the %R criteria and the magnitude of the excedance of the criteria.

If the %R of the analyte is > UL, qualify all positive results (j) for the affected analyte in the associated samples and accept nondetects.

If the %R of the analyte is < LL, qualify all positive results (j) and reject (R) nondetects for the affected analyte in the associated samples.

If more than half the compounds in the LCS are not within the required recovery criteria, qualify all positive results as (J) and reject nondetects (R) for all target analyte(s) in the associated samples.

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix (1 per 20 samples per matrix)? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected. Discuss the actions below:

	All criter	ria were me	∍t
	Criteria were not met and/or se	e below _	_N/A
IX.	FIELD/LABORATORY DUPLICATE PRECISION		
Sampl	le IDs:	Matrix:	

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measures only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
			data package. MS/tory and validation of		
			ected above reportin		

Criteria:

The project QAPP should be reviewed for project-specific information. RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples if results are \geq SQL. If both samples and duplicate are \leq SQL, the RPD criteria is doubled.

SQL = soil quantitation limit

Actions:

If both the sample and the duplicate results are nondetects (ND), the RPD is not calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is $\geq 5x$ the SQL qualify (J/UJ).

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

All criteria were met>	
Criteria were not met and/or see below	

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
 - Retention time windows must be re-established for each Target VPH Analyte each time a new GC column is installed, and must be verified and/or adjusted on a daily basis.
 - o Coelution of the m- and p- xylene isomers is permissible.
 - All surrogates must be adequately resolved from individual Target Analytes included in the VPH Component Standard.
 - For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.

Note: Target analytes were within the retention time window.

2. If target analytes and/or TICs were not correctly identified, request that the laboratory resubmit the corrected data.

The sample que 1. In the s MC47884-1 FID [] = (201961)/([] = 0.516 ppb MC47884-1 PID [] = (25528828 [] = 34.93 ppb 2. If reque	pace below, please show a m VPH (C5 – C7 $^{\circ}$ 3.913 x $^{\circ}$)	y laboratory quantitation results. inimum of one sample calculation: Aliphatics) RF = 3.913 x 10 ⁵
1. In the s MC47884-1 FID [] = (201961)/([] = 0.516 ppb MC47884-1 PID [] = (25528828 [] = 34.93 ppb 2. If reque	pace below, please show a m VPH (C5 – C7 3.913 x 10 ⁵) Ok VPH (C9 – C10	inimum of one sample calculation: Aliphatics) RF = 3.913 x 10 ⁵
MC47884-1 FID [] = (201961)/([] = 0.516 ppb MC47884-1 PID [] = (25528828 [] = 34.93 ppb 2. If reque	VPH (C5 – C7 3.913 x 10 ⁵) Ok VPH (C9 – C10	Aliphatics) RF = 3.913 x 10 ⁵
FID [] = (201961)/([] = 0.516 ppb MC47884-1 PID [] = (25528828 [] = 34.93 ppb 2. If reque	3.913 x 10 ⁵) Ok VPH (C9 – C10	
[] = (201961)/([] = 0.516 ppb MC47884-1 PID [] = (25528828 [] = 34.93 ppb 2. If reque	Ok VPH (C9 – C10) Aromatics) RF = 7.308 x 10 ⁵
[] = 0.516 ppb MC47884-1 PID [] = (25528828 [] = 34.93 ppb 2. If reque	Ok VPH (C9 – C10) Aromatics) RF = 7.308 x 10 ⁵
MC47884-1 PID [] = (25528828 [] = 34.93 ppb 2. If reque	VPH (C9 – C10	Aromatics) RF = 7.308 x 10 ⁵
PID [] = (25528828 [] = 34.93 ppb 2. If reque) Aromatics) RF = 7.308 x 10 ⁵
PID [] = (25528828 [] = 34.93 ppb 2. If reque		Aromatics) RF = 7.308 x 10 ⁵
[] = (25528828 [] = 34.93 ppb 2. If reque	3)/(7.308 x 10 ⁵)	
[] = 34.93 ppb 2. If reque	3)/(7.308 x 10 ⁵)	
2. If reque		
	Ok	
(MDLs).	ested, verify that the results we	ere above the laboratory method detection lin
the affe	cted samples and dilution fact	
SAMPLE MC47884-1	ID DILUTION FACTOR 10 X	
		Aliphatic hydrocarbons over calibration range
MC47884-6	100 X	Aliphatic hydrocarbons over calibration range
<u> </u>		

EXECUTIVE NARRATIVE

SDG No: MC47884 Laboratory: Accutest, Massachusetts

Analysis: MADEP EPH Number of Samples: 7

Location: BMSMC, Building 5 Area

Humacao, PR

SUMMARY: Seven (7) samples were analyzed for Extractables TPHC Ranges by method MADEP

EPH. Samples were validated following the METHOD FOR THE DETERMINATION OF EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets

are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues: None Major: None Minor: None

Critical findings: None Major findings: None

Minor findings: 1. Initial and continuing calibration meets method specific requirements.

Closing calibration included in data package. Closing calibration meets method specific requirements except for the cases described in the Data Review Worksheet. C19-C36 aliphtic hydrocarbons qualified as estimated

(J) or (UJ) in affected samples.

2. Analytes detected in method blank at a concentration below the reporting limits. Analytes detected in sample batch above MDL but below the reporting limits. Laboratory qualified the results as JB. Sample results below the reporting limit are qualified undetected (U) at the reporting

limits; results above the reporting limit/action level are retained.

COMMENTS: Results are valid and can be used for decision making purposes.

Reviewers Name: Rafael Infante

Chemist License 1888

Signature: Rafael Dufacet

Date: October 6, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: MC47884-1

Sample location: BMSMC Building 5 Area

Sampling date: 9/15/2016

Matrix: Groundwater

METHOD: MADEP EPH

Analyte Name	Result	Units Di	ilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	100	ug/L	1	-	U	Yes
Ç9 - C18 Aliphatics	100	ug/L	1	-	U	Yes
Ç19 - C36 Aliphatics	100	ug/L	1	-	UJ	Yes
Ç11 - C22 Aliphatics	100	ug/L	1	-	U	Yes

Sample ID: MC47884-2

Sample location: BMSMC Building 5 Area

Sampling date: 9/15/2016

Matrix: Groundwater

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	110	ug/L	1	-	U	Yes
Ç9 - C18 Aliphatics	110	ug/L	1	-	U	Yes
Ç19 - C36 Aliphatics	110	ug/L	1	-	UJ	Yes
Ç11 - C22 Aliphatics	110	ug/L	1	-	U	Yes

Sample ID: MC47884-3

Sample location: BMSMC Building 5 Area

Sampling date: 9/16/2016

Matrix: Groundwater

METHOD: MADEP EPH

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	100	ug/L	1	-	U	Yes
Ç9 - C18 Aliphatics	36.8	ug/L	1	JB	U	Yes
Ç19 - C36 Aliphatics	100	ug/L	1	-	UJ	Yes
Ç11 - C22 Aliphatics	100	ug/L	1	-	U	Yes

Sample ID: MC47884-4

Sample location: BMSMC Building 5 Area

Sampling date: 9/16/2016 Matrix: Groundwater

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	110	ug/L	1	-	U	Yes
Ç9 - C18 Aliphatics	110	ug/L	1	-	U	Yes
Ç19 - C36 Aliphatics	31.9	ug/L	1	JB	U	Yes
C11 - C22 Aliphatics	110	ug/L	1	_	U	Yes

Sample ID: MC47884-5

Sample location: BMSMC Building 5 Area

Sampling date: 9/16/2016

Matrix: Groundwater

METHOD: MADEP EPH

Analyte Name	Result	Units [Dilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	524	ug/L	1	-	-	Yes
Ç9 - C18 Aliphatics	30.6	ug/L	1	JB	U	Yes
Ç19 - C36 Aliphatics	100	ug/L	1	-	UJ	Yes
Ç11 - C22 Aliphatics	440	ug/L	1	-	-	Yes

Sample ID: MC47884-6

Sample location: BMSMC Building 5 Area

Sampling date: 9/19/2016 Matrix: Groundwater

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	59.9	ug/L	1	J	J	Yes
Ç9 - C18 Aliphatics	110	ug/L	1	-	U	Yes
Ç19 - C36 Aliphatics	68.6	ug/L	1	JB	U	Yes
C11 - C22 Aliphatics	58.3	ug/L	1	J	J	Yes

Sample ID: MC47884-7

Sample location: BMSMC Building 5 Area

Sampling date: 9/19/2016

Matrix: Groundwater

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	63.5	ug/L	1	J	J	Yes
Ç9 - C18 Aliphatics	110	ug/L	1	-	U	Yes
Ç19 - C36 Aliphatics	110	ug/L	1	-	UJ	Yes
Ç11 - C22 Aliphatics	33.5	ug/L	1	J	J	Yes

DATA REVIEW WORKSHEETS

Type of validation Full:X Limited:	Project Number:_MC47884
REVIEW OF EXTRACTABLE PETROLE	UM HYDROCARBON (EPHs) PACKAGE
validation actions. This document will assist the more informed decision and in better serving to were assessed according to the data validation precedence METHOD FOR THE DETERM HYDROCARBONS (VPH), Massachusetts Depa (2004). Also the general validation guidelines	e organics were created to delineate required reviewer in using professional judgment to make he needs of the data users. The sample results in guidance documents in the following order of IINATION OF EXTRACTABLE PETROLEUM artment of Environmental Protection, Revision 1.1 promulgated by the USEPA Hazardous Wastes ation actions listed on the data review worksheets otherwise noted.
The hardcopied (laboratory name) _Accutest received has been reviewed and the quality contreview for SVOCs included:	Laboratories data package trol and performance data summarized. The data
Lab. Project/SDG No.:MC47884	
X Holding TimesN/A GC/MS TuningN/A Internal Standard Performance	X_ Laboratory Control SpikesX_ Field DuplicatesX_ CalibrationsX_ Compound IdentificationsX_ Compound QuantitationX_ Quantitation Limits
Overall _Extractable_Petroleum_Hydrocarbons_by_GC_(C9_to_C36_Aliphatics;_C11_to_C22_(Aromatic	Comments: _by_Method_MADEP_EPH,_REV_1.1s)
Definition of Qualifiers:	
J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer: AWW MWW Date:_10/05/2016	

		All criteria were metx net and/or see below
DATA COMPLETN A. Data Packa		
MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
B. Other		Discrepancies:
		4508024 888

All criteria were metX
Criteria were not met and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

I .								
Samples extracted and analyzed within method recommended holding time. Sample preservation within the required criteria.								

Criteria

Preservation:

Aqueous samples must be acidified to a pH of 2.0 or less at the time of collection.

Soil samples must be cooled at 4 ± 2 °C immediately after collection.

Holding times:

Samples must be extracted within 14 days of collection, and analyzed within 40 days of extraction.

Cooler temperature	(Criteria:	4 ± 2 °C):	3.7°C	

Actions: Qualify positive results/nondetects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ). If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R). If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

		Crite	All criteria eria were not met and/o	a were metX or see below
CALIBRAT	IONS VERIFIC	ATION		
	at the instrum		nstrument calibration producing and mai	
Dat	e of initial calib	ration:08/05	5/16	
Dat	es of initial cali	bration verification:_	08/05/16	
Inst	rument ID num	bers:GCD	E	
Mat	rix/Level:	_AQUEOUS/MEDIUI	M	
DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED
Initi	al and initial ca	libration verification	meet method specific i	requirements

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be equal to or less than 25% over the working range for the analyte of interest. When this condition is met, linearity through the origin may be assumed, and the average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range of interest. Calculate the collective CFs for C9-C18 Aliphatic Hydrocarbons, C19-C36 Aliphatic Hydrocarbons, and C11-C22 Aromatic Hydrocarbons using the FID chromatogram. Tabulate the summation of the peak areas of all components in that fraction against the total concentration injected. The %RSD of the calibration factor must be equal to or less than 25% over the working range for the hydrocarbon range of interest.
 - The area for the surrogates must be subtracted from the area summation of the range in which they elute.
 - The areas associated with naphthalene and 2-methylnaphthalene in the aliphatic range standard must be subtracted from the uncorrected collective C9-C18 Aliphatic Hydrocarbon range area prior to calculating the CF.

DATA REVIEW WORKSHEETS

Criteria- CCAL

- At a minimum, the working calibration factor must be verified on each working day, after every 20 samples or every 24 hours (whichever is more frequent), and at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects.

If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:08/05/16					
Dates of continuing calibration verification:09/28/16: 10/01/16					
Dates of final calibration verification: 09/28/16; 10/01/16					
Instrument ID numbers: GCDE					
Matrix/Level: AQUEOUS/MEDIUM					

DATE LABFILE ANALYTE		CRITERIA OUT	SAMPLES	
	ID#		RFs, %RSD, %D, r	AFFECTED
Initial and	continuing of	calibration meets meth	od specific requiremer	nts. Closing calibration
		ckage. Continuing and		
		pt for the cases descri		
	(qualified as estimated	(J) in affected samples	
10/01/16	cc843-50	C19-C36 Aliphatics	29.2 %	MC47884-1 to -7
10/01/16	cc843-50	C19-C36 Aliphatics	29.3 %	
10/01/16	cc843-50	C19-C36 Aliphatics	27.1 %	

A separate worksheet should be filled for each initial curve

All criteria were met _	
Criteria were not met and/or see below	X

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data. A Laboratory Method Blank must be run after samples suspected of being highly contaminated to determine if sample carryover has occurred.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_METHOD BL _THE_CASES_				CRITERIA_EXCEPT_IN_
_09/28/16	_OP48782-MI	3Aq./low_	_C9-C18_Aliphatio _C19-C36_Aliphat	s32.7_ug/l ics39.4_ug/l

Note: Analytes detected in method blank at a concentration below the reporting limits. Analytes detected in sample batch above MDL but below the reporting limits. Laboratory qualified the results as JB. Sample results below the reporting limit are qualified undetected (U) at the reporting limits; results above the reporting limit/action level are retained.

Field/Trip/Equipment

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_NO_TRIP/FIE _DATA_PACK		ENT_BLANKS	S_ANALYZED_ASS	SOCIATED_WITH_THIS
Note:				

All criteria were met	X
Criteria were not met and/or see below	

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

	All criteria were met _	_X
Criteria were not	met and/or see below	

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID	SURROG	ATE COMPOU S2	ND S3	S4	ACTION
SURROGATE _LIMITS	STANDARI	OS_RECOVER	ries_within_i	LABORATO	RY_CONTROL
S1 = o-Terpheny	4 40 140%		S2 = 2-Fluoro	shinhanul 4	0.140%
S3 = 1-Chlorooc			S4 = 2-Brom		
QC Limits (%)* (_LL_to_UL4 QC Limits* (Solid	40_to_140_	_40_to_140_	_40_to_140	40_to_1	140_
_LL_to_UL_	•	to	to	to	_

Note:

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 40% or more than 140%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- (1) Obvious interference is present on the chromatogram (e.g., unresolved complex mixture);
- (2) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were metX_	
Criteria were not met and/or see below	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 40 140% of the true value. Lower recoveries of n-nonane are permissible but must be noted in the narrative if <30%.</p>

MS/MSD Recov	eries and Precision Crit	eria			
Sample ID:	MC47834-1	Matrix/Level:_Groundwater			
List the %Rs, R	PD of the compounds w	hich do no	t meet t	he QC criteria.	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
					

Note: MS/MSD % recoveries and RPD within laboratory control limits.

			Criteri	a were not m		ia were met _ e belowN/	
informed p conjunction data. In th affect only However, i	orofessional n with other ose instand the sample t may be de tic problen	MS/MSD results I judgment, the or QC criteria and ces where it can e spiked, the qualitermined through in the analysi	data r detern be de alificati n the M	eviewer may mine the nee etermined th on should be IS/MSD resu	use the Modern the leading of the result the result to the leading to the leading to the leading to the leading th	IS/MSD results of the MS/ this sample all aboratory is h	of the /MSD alone. aving
2. MS	/MSD — Un:	spiked Compound	ds				
		s of the unspiked piked sample, ma					these
COMPOUI		CONCENTRATION SAMPLE	ON MS	MSD	%RPD	ACT	ION
							_
Criteria: No	ne specifie	ed, use %RSD < 5	50 as p	professional j	udgment.		
Actions:							

If the % RSD > 50, qualify the results in the spiked sample as estimate (J). If the % RSD is not calculable (NC) due to nondetect value in the sample, MS, and/or MSD, use professional judgment to qualify sample data.

A separate worksheet should be used for each MS/MSD pair.

	All criteria were metX Criteria were not met and/or see below					
VIII.	LABORATORY CONTROL SAMPLE (LCS/LCSD) ANALYSIS					
This matrices.	data is generated to determine accuracy of the analytical method for various					
1.	LCS Recoveries Criteria					
	List the %R of compounds which do not meet the criteria					
LCS ID	COMPOUND % R QC LIMIT ACTION					
LCS_REC	COVERY_WITHIN_LABORATORY_CONTROL_LIMTS					
Criter	Refer to QAPP for specific criteria. The spike recovery must be between 40% and 140%. Lower recoveries of n-nonane are permissible. If the recovery of n-nonane is <30%, note the nonconformance in the executive narrative. RPD between LCS/LCSD must be < 25%.					
Actio that a	Actions: Actions on LCS recovery should be based on both the number of compounds that are outside the %R and RPD criteria and the magnitude of the excedance of the criteria.					
the associate If the %R of for the affect If more than	the analyte is > UL, qualify all positive results (j) for the affected analyte in ed samples and accept nondetects. the analyte is < LL, qualify all positive results (j) and reject (R) nondetects ed analyte in the associated samples. half the compounds in the LCS are not within the required recovery criteria, sitive results as (J) and reject nondetects (R) for all target analyte(s) in the amples.					
2. Frequ	uency Criteria:					
per matrix)?] If no, the dat the effect an	Where LCS analyzed at the required frequency and for each matrix (1 per 20 samples per matrix)? Yes or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected. Discuss the actions below:					

		All criteria were met	
		Criteria were not met and/or see below _N/	A_
IX.	FIELD/LABORATORY DUF	PLICATE PRECISION	
Sampl	e IDs:		

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measures only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION				
No field/aboratory duplicate analyzed with this data package MS/MSD % recovery PDD									
No field/laboratory duplicate analyzed with this data package. MS/MSD % recovery RPD used to assess precision. RPD within laboratory and validation guidance document criteria (± 50 % RPD) for analytes concentration ≥ 5 SQL.									

Criteria:

The project QAPP should be reviewed for project-specific information. RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples if results are \geq SQL. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

SQL = soil quantitation limit

Actions:

If both the sample and the duplicate results are nondetects (ND), the RPD is not calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is $\geq 5x$ the SQL qualify (J/UJ).

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

All criteria were metX
Criteria were not met and/or see below

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
 - Retention time windows must be re-established for each Target EPH Analyte each time a new GC column is installed, and must be verified and/or adjusted on a daily basis.
 - The n-nonane (n-C9) peak must be adequately resolved from the solvent front of the chromatographic run.
 - o All surrogates must be adequately resolved from the Aliphatic Hydrocarbon and Aromatic Hydrocarbon standards.
 - For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.
- 1a. Aliphatic hydrocarbons range:
 - o Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for n-C9 and 0.01 minutes before the Rt for n-C19.
 - Determine the total area count for all peaks eluting 0.01 minutes before the Rt for n-C19 and 0.1 minutes after the Rt for n-C36.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

- Aromatic hydrocarbons range:
 - Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for naphthalene and 0.1 minutes after the Rt for benzo(g,h,i)perylene.
 - Determine the peak area count for the sample surrogate (OTP) and fractionation surrogate(s). Subtract these values from the collective area count value.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

	Criteria w	All criteria were met X	
2.	If target analytes and/or TICs were not collaboratory resubmit the corrected data.	orrectly identified, request that	the
3.		mple specific basis by evaluating bromonaphthalene) and on a bathylnaphthalene in both the aliphasD. If either the concentration e aliphatic fraction exceeds 5% or 2-methylnaphthalene in the Lon all archived batch extracts.	the atch atio of of .CS
	summation of the	n the LCS/LCSD pair includes to concentration detected in the the concentration detected in the	the
	_Comments:Concentration_in_the_aliphati _concentration_for_naphthalene_and_2-meth	ic_fraction_<_5%_of_the_total nylnaphthalene	<u> </u>
4.	Fractionation Check Standard – A fractic containing 14 alkanes and 17 PAHs at a not each constituent. The Fractionation Check Standard reactionation efficiency of each new lot of sill optimum hexane volume required to efficient not allowing significant aromatic hydrocarbocontained in the fractionation check solution Recovery must be between 40 and 140%. A nonane.	ominal concentration of 200 ng/µl olution must be used to evaluate ica gel/cartridges, and establish ly elute aliphatic hydrocarbons wl on breakthrough. For each anal n, excluding n-nonane, the Perc	I of the the hile lyte ent
	Is a fractionation check standard analyzed?	Yes? or No	?
	Comments: Not applicable.		

All criteria were met _	_X
Criteria were not met and/or see below	

XII. QUANTITATION LIMITS AND SAMPLE RESULTS

The sample quantitation evaluation is to verify laboratory quantitation results.

In order to demonstrate the absence of aliphatic mass discrimination, the response ratio of C28 to C20 must be at least 0.85. If <0.85, this nonconformance must be noted in the laboratory case narrative.

The chromatograms of Continuing Calibration Standards for aromatics must be reviewed to ensure that there are no obvious signs of mass discrimination.

Is aliphatic mass discrimination observed in the sample?

Yes? or No?

Is aromatic mass discrimination observed in the sample?

Yes? or No?

1. In the space below, please show a minimum of one sample calculation:

JC47884-1

EPH (C11 – C22, Aromatics)

RF = 114,553

[] = (1407845)/(114,553)

[] = 12.3 ug/ml Ok

JC47884-1MS

EPH (C19 – C36, Aliphatics)

RF = 72.594

[] = (964827)/(72,594)

[] = 13.3 ug/ml Ok

DATA REVIEW WORKSHEETS

- 2. If requested, verify that the results were above the laboratory method detection limit (MDLs).
- 3. If dilutions performed, were the SQLs elevated accordingly by the laboratory? List the affected samples and dilution factor in the table below.

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
	1	
		+
		#

If dilution was not performed, affected samples/compounds:	results	(J)	for the	affected	compounds.	List the
		_				